四 MONASH University
 ETC3250/5250 Introduct Machine Learning

Week 5: Trees and forests

Professor Di Cook

etc3250.clayton-x@monash.edu
Department of Econometrics and Business Statistics

Overview

We will cover:

- Classification trees, algorithm, stopping rules
- Difference between algorithm and parametric methods, especially trees vs LDA
- Forests: ensembles of bagged trees
- Diagnostics: vote matrix, variable importance, proximity
- Boosted trees

Trees

Nice explanation of trees, forests, boosted trees

Algorithm: growing a tree

1. All observations in a single set
2. Sort values on first variable
3. Compute the chosen split criteria for all possible splits into two sets
4. Choose the best split on this variable. Save this info.
5. Repeat 2-4 for all other variables
6. Choose the best variable to split on, based on the best split. Your data is now in two sets.
7. Repeat 1-6 on each subset.
8. Stop when stopping rule that decides that the best classification model is achieved.

Pros and cons:

- Trees are a very flexible way to fit a classifier.
- They can
- utilise different types of predictor variables
- ignore missing values
- handle different units or scales on variables
- capture intricate patterns
- However, they operate on a per variable basis, and do not effectively model separation when a combination of variables is needed.

Common split criteria

Classification

- The Gini index measures is defined as: $$
G = \sum_\{k=1\}^K \widehat\{p\}_\{mk\}(1\widehat\{p\}_\{mk\})
$$
- Entropy is defined as \[D = - \sum_\{k $=1\}^{\wedge} \mathrm{K}$ \widehat $\{p\} _\{m k\}$ $\left.\log \left(\backslash w i d e h a t\{p\} _\{m k\}\right) \backslash\right]$ What corresponds to a high value, and what corresponds to a overall MSE. low value?

Regression

Define

$\backslash[$ mbox $\{\mathrm{MSE}\}=\backslash$ frac $\{1\}$ n\} \backslash sum_\{i=1\}^\{n\} (y_i - \widehat\{y\}_i)^2\]

Split the data where combining MSE for left bucket (MSE_L) and right bucket (MSE_R), makes the biggest reduction from the

Illustration (1/2)

\mathbf{x}	$\mathbf{c l}$
11	A
33	A
39	B
44	A
50	A
56	B
70	B

Note: x is sorted from lowest to highest!
All possible splits shown by vertical lines

What do you think is the best split? 2, 3 or 5??

Illustration (2/2)

Calculate the impurity for split 5

The left bucket is

\mathbf{x}	$\mathbf{c l}$
11	A
33	A
39	B
44	A
50	A

and the right bucket is

\mathbf{x}	$\mathbf{c l}$
56	B
70	B

Using Gini $\backslash\left(G=\backslash s u m _\{k=1\}^{\wedge} K\right.$ lwidehat $\{p\} _\{m k\}(1-$ \widehat\{p\}_\{mk\})
)
Left bucket:
$\backslash\left\lceil\right.$ widehat $\{p\} _\{L A\}=4 / 5$, \backslash widehat $\left.\{p\} _\{L B\}=1 / 5, \sim \sim p _L=5 / 7 \backslash\right]$
\G_L=0.8(1-0.8)+0.2(1-0.2) = 0.32 $]$
Right bucket:
\backslash ไwidehat $\{p\} _\{R A\}=0 / 2$, \backslash widehat $\{p\} _\{R B\}=2 / 2, \sim \sim p _R=$ 2/7\]

$\\left[G _R=0(1-0)+1(1-1)=0 \backslash\right]$ Combine with weighted sum to get
impurity for the split:

$$
5/7G_L + 2/7G_R=0.32
$$

Your turn: Compute the impurity for split 2.

Splits on categorical variables

Possible best split would be if koala then assign to Vic else assign to WA, because Vic has more koalas but and WA has more emus and roos.

Dealing with missing values on predictors

$\mathbf{x 1}$	$\mathbf{x 2}$	$\mathbf{x 3}$	$\mathbf{x 4}$	\mathbf{y}
19	-8	22	-24	A
NA	-10	26	-26	A
15	NA	32	-27	B
17	-6	27	-25	A
18	-5	NA	-23	A
13	-3	37	NA	B
12	-1	35	-30	B
11	-7	24	-31	B

50% of cases have missing values. Trees ignore missings only on a single variable.

Every other method ignores a full observation if missing on any variable. That is, would only be able to use half the data.

Example: penguins $1 / 3$

Can you draw the tree?

Stopping rules

- Minimum split: number of observations in a node, in order for a split to be made
- Minimum bucket: Minimum number of observations allowed in a terminal node
- Complexity parameter: minimum difference between impurity values required to continue splitting

Example: penguins $2 / 3$

Defaults for rpart are:

```
rpart.control(minsplit = 20,
    minbucket = round(minsplit/3)
    cp = 0.01,
    maxcompete = 4,
    maxsurrogate = 5,
    usesurrogate = 2,
    xval = 10,
    surrogatestyle = 0, maxdepth = 30,
    ...)
```


Example: penguins $3 / 3$


```
p_fit_tree |>
    extract_fit_engine() |>
    rpart.plot(type=3, extra=1)
```


Example: penguins 3/4

Model fit summary

Can you see the misclassified test cases?

Model-in-the-data-space

Comparison with LDA

Tree model

bl

LDA model

Assume normal, equal VC, oblique splits

Random forests

Overview

A random forest is an ensemble classifier, built from fitting multiple trees to different subsets of the training data.

Sample 1

Sample 2

Sample 3

Bagging and variable sampling

- Take $\backslash(B \backslash)$ different bootstrapped training sets:
(D_1, D_2, \dots, D_B
), each using a sample of variables.
- Build a separate prediction model using each
(D_\{(\cdot)\}
):
\widehat\{f\}_1(x), \widehat $\{f\}$ 2(x), \dots, \widehat $\{f\}$ _B(x) \]
- Predict the out-of-bag cases for each tree, compute proportion of trees a case was predicted to be each class.
- Predicted value for each observation is the class with the highest proportion.
- Each individual tree has high variance.
- Aggregating the results from $\backslash(B \backslash)$ trees reduces the variance.

Comparison with a single tree and LDA

Random forest

Data-driven, multiple trees gives non-linear fit

LDA model

bl

Random forest fit and predicted values

Fit

1	rf_spec <- rand_forest(mtry=2, trees=1000) $\quad \mid>$
2	set_mode("classification") \|>
3	set_engine("randomForest")
4	p_fit_rf<- rf_spec $\mid>$
5	fit(species \sim., data $=$ p_tr)

```
parsnip model object
Call:
    randomForest(x = maybe_data_frame(x), y = y, ntree =
~1000, mtry = min_cols(~2, x))
    Type of random forest: classification
        Number of trees: 1000
No. of variables tried at each split: 2
```

 OOB estimate of error rate: 4.8\%
 Confusion matrix:

	Adelie	Chinstrap	class.error
Adelie	96	4	0.040
Chinstrap	3	42	0.067

Predicted values

> Warning: Don't use the predict () on the training set, you'll always get 0 error. The object p_fit_rf\$fit\$predict has the fitted values.

Diagnostics

- Error is computed automatically on the out-of-bag cases.
- Vote matrix, $\backslash($ nltimes K
): Proportion of times a case is predicted to the class $\backslash(\mathrm{k})$). Also consider these to be predictive probabilities.
- Variable importance: uses permutation!
- Proximities,
(nltimes n): Closeness of cases measured by how often they are in the same terminal node.

Vote Matrix

- Proportion of trees the case is predicted to be each class, ranges between 0-1
- Can be used to identify troublesome cases.
- Used with plots of the actual data can help determine if it is the record itself that is the problem, or if method is biased.
- Understand the difference in accuracy of prediction for different classes.

1 p_fit_rf\$fit\$votes

Adelie	Chinstrap
1.0000	0.0000
1.0000	0.0000
0.9807	0.0193
1.0000	0.0000
1.0000	0.0000
1.0000	0.0000
1.0000	0.0000
0.3982	0.6018
1.0000	0.0000
1.0000	0.0000
1.0000	0.0000
0.8274	0.1726
0.3425	0.6575
1.0000	0.0000

Curious

Where are the Adelie penguins in the training set that are misclassified?

```
parsnip model object
Call:
    randomForest(x = maybe_data_frame(x), y = y, ntree =
~1000, mtry = min_cols(~2, x))
                            Type of random forest: classification
            Number of trees: 1000
No. of variables tried at each split: 2
            OOB estimate of error rate: 4.8%
Confusion matrix:
\begin{tabular}{lrrr} 
& Adelie & Chinstrap & class.error \\
Adelie & 96 & 4 & 0.040
\end{tabular}
\begin{tabular}{llll} 
Chinstrap & 3 & 42 & 0.067
\end{tabular}
```

Join data containing true, predicted and predictive probabilities, to diagnose.

bl

Variable importance (1/2)

1. For every tree predict the oob cases and count the number of votes cast for the correct class.
2. Randomly permute the values on a variable in the oob cases and predict the class for these cases.
3.Difference the votes for the correct class in the variable-permuted oob cases and the real oob cases. Average this number over all trees in the forest. If the value is large, then the variable is very important.

Alternatively, Gini importance adds up the difference in impurity value of the descendant nodes with the parent node. Quick to compute.

Read a fun explanation by Harriet Mason

Variable importance (2/2)

	1 p_fit_rf\$fit\$importance
MeanDecreaseGini	
bl	57.2
bm	4.5

```
p_tr_perm <- p_tr
mutate(bl = sample(bl))
ggplot(p_tr_perm, aes(x=bl, y=bm, colour=species))
geom_point()
scale_color_discrete_divergingx(palette = "Zissou 1")
ggtitle("Permuted bl")
theme(legend.position="none")
```

Training data

b

Votes will be close to 0.5 for both classes.

Proximities

- Measure how each pair of observations land in the forest
- Run both in- and out-of-bag cases down the tree, and increase proximity value of cases $\backslash(i, j)$ by 1 each time they are in the same terminal node.
- Normalize by dividing by $\backslash(\mathrm{B})$.

This creates a similarity matrix between all pairs of observations.

- Use this for cluster analysis of the data for further diagnosing unusual observations, and model inadequacies.

Utilising diagnostics (1/3)

The votes matrix yields more information than the confusion matrix, about the confidence that the model has in the prediction for each observation, in the training set.
It is a $\backslash(\mathrm{K} \backslash)$-D object, but lives in $\backslash((\mathrm{K}-1) \backslash)$-D because the rows add to 1 .

Let's re-fit the random forest model to the three species of the penguins.

1 p_ternary

Utilising diagnostics (2/3)

DEMO: Use interactivity to investigate the uncertainty in the predictions.

```
library(detourr)
library(crosstalk)
library(plotly)
library(viridis)
p_tr2_std <- p_tr2
    mutate if(is.numeric, function(x) (x-mean(x))/sd(x))
p_tr2_v <- bind_cols(p_tr2_std, p_rf_v_p[,1:2])
p_tr2_v_shared <- SharedData$new(p_tr2_v)
detour_plot <- detour(p_tr2_v_shared, tour_aes(
    projection = bl:bm,
    colour = species))
        tour_path(grand_tour(2),
            max_bases=50, fps = 60) |>
            show_scatter(alpha = 0.9, axes = FALSE,
                    width = "100%",
                    height = "450px",
                        palette = hcl.colors(3,
```


Utilising diagnostics (3/3)

Variable importance can help with variable selection.

1							p_fit_rf2\$fit\$importance
MeanDecreaseGini							
bl	58						
bd	28						
fl	45						
bm	12						

Top two variables are $b l$ and $f l$.

species

- Adelie
- Chinstrap
- Gentoo

Especially useful when you have many more variables.

Boosted trees (1/3)

Random forests build an ensemble of independent trees, while boosted trees build an ensemble from shallow trees in a sequence with each tree learning and improving on the previous one, by re-weighting observations to give mistakes more importance.

Source: Boehmke (2020) Hands on Machine Learning with R

Boosted trees $(2 / 3)$

Boosting iteratively fits multiple trees, sequentially putting more weight on observations that have predicted inaccurately.

1. Set weights (probabilities) for all observations in training set (according to class sample sizes using log odds ratio). Fit a tree with fixed $\backslash(d)$ splits ($\backslash(d+1 \backslash)$ terminal nodes).
2. For $b=1,2, \ldots$, B, repeat:
a. Compute fitted values
b. Compute pseudo-residuals
c. Fit the tree to the residuals
d. Compute new weights (probabilities)
3. Aggregate predictions from all trees.

Boosted trees (3/3)

Limitations of trees

- Most implementations only splits on a single variable, not combinations.
- There are versions that build trees on combinations, eg PPTreeViz and PPforest, but you lose interpretability, and fitting is more difficult.
- Sees only splits, but not gaps. (See support vector machines, in a few weeks.)
- Algorithm takes variables in order, and splits in order, and will use first as best.
- Need tuning and cross-validation.

Next: Neural networks and deep learning

