四 MONASH University
 ETC3250/5250 Introduct Machine Learning

Week 4: Logistic regression and discriminant analysis

Professor Di Cook

etc3250.clayton-x@monash.edu
Department of Econometrics and Business Statistics

Overview

We will cover:

- Fitting a categorical response using logistic curves
- Multivariate summary statistics
- Linear discriminant analysis, assuming samples are elliptically shaped and equal in size
- Quadratic discriminant analysis, assuming samples are elliptically shaped and different in size
- Discriminant space: making a low-dimensional visual summary

Logistic regression

When linear regression is not appropriate

Consider the following data Default in the ISLR R package (textbook) which looks at the default status based on credit balance.

Modelling binary responses

Orange line (logistic model fit) is similar to computing a running average of the $0 \mathrm{~s} / 1 \mathrm{~s}$. It's much better than the linear fit, because it remains between 0 and 1, and can be interpreted as proportion of 1 s .
What is a logistic function?

The logistic function

Instead of predicting the outcome directly, we instead predict the probability of being class 1 , given the (linear combination of) predictors, using the logistic function.

$$
p\left(y=1 \mid \beta_{0}+\beta_{1} x\right)=f(x)
$$

where

$$
f(x)=\frac{e^{\beta_{0}+\beta_{1} x}}{1+e^{\beta_{0}+\beta_{1} x}}
$$

Logistic function

Transform the function:

$$
y=\frac{e^{\beta_{0}+\beta_{1} x}}{1+e^{\beta_{0}+\beta_{1} x}}
$$

Transforming the response $\log _{e} \frac{y}{1-y}$ makes it possible to use a linear model fit.

$$
\longrightarrow y=\frac{1}{1 / e^{\beta_{0}+\beta_{1} x}+1}
$$

$$
\longrightarrow 1 / y=1 / e^{\beta_{0}+\beta_{1} x}+1
$$

$$
\longrightarrow 1 / y-1=1 / e^{\beta_{0}+\beta_{1} x}
$$

$$
\longrightarrow \frac{1}{1 / y-1}=e^{\beta_{0}+\beta_{1} x}
$$

The left-hand side, $\log _{e} \frac{y}{1-y}$, is known as the log-odds ratio or logit.

$$
\longrightarrow \frac{y}{1-y}=e^{\beta_{0}+\beta_{1} x}
$$

$$
\longrightarrow \log _{e} \frac{y}{1-y}=\beta_{0}+\beta_{1} x
$$

The logistic regression model

The fitted model, where $P(Y=0 \mid X)=1-P(Y=1 \mid X)$, is then written as:
$\log _{e} \frac{P(Y=1 \mid X)}{1-P(Y=1 \mid X)}=\beta_{0}+\beta_{1} X$

When there are more than two categories:

- the formula can be extended, using dummy variables.
- follows from the above, extended to provide probabilities for each level/category, and the last category is 1 -sum of the probabilities of other categories.
- the sum of all probabilities has to be 1 .

Connection to generalised linear models

- To model binary data, we need to link our predictors to our response using a link function. Another way to think about it is that we will transform Y, to convert it to a proportion, and then build the linear model on the transformed response.
- There are many different types of link functions we could use, but for a binary response we typically use the logistic link function.

Interpretation

- Linear regression
- β_{1} gives the average change in Y associated with a one-unit increase in X
- Logistic regression
- Because the model is not linear in X, β_{1} does not correspond to the change in response associated with a one-unit increase in X.
- However, increasing X by one unit changes the log odds by β_{1}, or equivalently it multiplies the odds by $e^{\beta_{1}}$

Maximum Likelihood Estimation

Given the logistic $p\left(x_{i}\right)=\frac{1}{e^{-\left(\beta_{0}+\beta_{1} x_{i}\right)}+1}$ choose parameters β_{0}, β_{1} to maximize the likelihood:

$$
l_{n}\left(\beta_{0}, \beta_{1}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)^{y_{i}}\left(1-p\left(x_{i}\right)\right)^{1-y_{i}}
$$

It is more convenient to maximize the log-likelihood:

$$
\begin{aligned}
\log l_{n}\left(\beta_{0}, \beta_{1}\right) & =\sum_{i=1}^{n}\left(y_{i} \log p\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-p\left(x_{i}\right)\right)\right) \\
& =\sum_{i=1}^{n}\left(y_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)-\log \left(1+e^{\beta_{0}+\beta_{1} x_{i}}\right)\right)
\end{aligned}
$$

Making predictions

With estimates from the model fit, $\hat{\beta}_{0}, \hat{\beta}_{1}$, we can predict the probability of belonging to class 1 using:

$$
p\left(y=1 \mid \hat{\beta}_{0}+\hat{\beta}_{1} x\right)=\frac{e^{\hat{\beta}_{0}+\hat{\beta}_{1} x}}{1+e^{\hat{\beta}_{0}+\hat{\beta}_{1} x}}
$$

Round to 0 or 1 for class prediction.


```
fit <- glm(default~balance,
data=simcredit, family="binomial")
simcredit_fit <- augment(fit, simcredit,
4 type.predict="respons
```

Orange points are fitted values, \hat{y}_{i}. Black points are observed response, y_{i} (either 0 or 1).

Fitting credit data in R

We can use the glm function in R to fit a logistic regression model. The glm function can support many response types, so we specify family="binomial" to let R know that our response is binary.

```
fit <- glm(default~balance,
    data=simcredit, family="binomial")
simcredit_fit <- augment(fit, simcredit,
    type.predict="respons
```

Same calculation but written in tidymodels style

```
logistic_mod <- logistic reg()
    set_engine("glm")
    set_mode("classification")
    translate()
logistic_fit <-
    logistic_mod
    fit(default ~ balance,
        data = simcredit)
```


Examine the fit

Parameter estimates

$\widehat{\beta}_{0}=-10.65$
$\widehat{\beta}_{1}=0.01$

Can you write out the model?

Model fit summary

Null model deviance 2920.6 (error for model with no predictors)
Model deviance 1596.5 (error from fitted model)
How good is the model?

Check the model performance

Compute the balanced accuracy.
Unbalanced data set, with very different performance on each class.

How good is this model?

- Explains about half of the variation in the response, which would normally be reasonable.
- Gets most of the smaller but important class wrong.
- Not a very useful model.

A warning for using GLMs!

Logistic regression model fitting fails when the data is perfectly separated.

MLE fit will try and fit a step-wise function to this graph, pushing coefficients sizes towards infinity and produce large standard errors.

Pay attention to warnings!

Discriminant Analysis

Linear Discriminant Analysis

-Where are the sample means?

- What is the shape of the sample variancecovariance?

Linear discriminant analysis assumes the distribution of the predictors is a multivariate normal, with the same variance-covariance matrix, separately for each class.

Where would you draw a line to create a boundary separating Adelie and Gentoo penguins?

Assumptions underlie LDA

- All samples come from normal populations
- with the same population variancecovariance matrix

[^0]
LDA with $p=1$ predictors $1 / 4.410$

If $K=2$ (two classes labelled A and B) and each group has the same prior probability, the LDA rule is to assign the new observation x_{0} to class A if

$$
x_{0}>\frac{\bar{x}_{A}+\bar{x}_{B}}{2}
$$

- It's a really intuitive rule, eh?
- It also matters which of the two classes is considered to be A!!!
- So maybe easier to think about as "assign the new observation to the group with the closest mean".
- How does this rule arise from the assumptions?

Bayes Theorem $2 / 4$

Let $f_{k}(x)$ be the density function for predictor x for class k. If f is large, the probability that x belongs to class k is large, or if f is small it is unlikely that x belongs to class k. According to Bayes theorem (for K classes) the probability that x belongs to class k is:

$$
P(Y=k \mid X=x)=p_{k}(x)=\frac{\pi_{k} f_{k}(x)}{\sum_{i=1}^{K} \pi_{k} f_{k}(x)}
$$

where π_{k} is the prior probability that an observation comes from class k.

The density function $f_{k}(x)$ of a univariate normal (Gaussian) is

$$
f_{k}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{k}} \exp \left(-\frac{1}{2 \sigma_{k}^{2}}\left(x-\mu_{k}\right)^{2}\right)
$$

where μ_{k} and σ_{k}^{2} are the mean and variance parameters for the k th class. We also assume that $\sigma_{A}^{2}=\sigma_{B}^{2}=\cdots=\sigma_{K}^{2}$; then the conditional probabilities are

$$
p_{k}(x)=\frac{\pi_{k} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{k}\right)^{2}\right)}{\sum_{l=1}^{K} \pi_{l} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{l}\right)^{2}\right)}
$$

Population

Data

LDA with $p=1$ predictors $_{4 / 4}$

A simplification of $p_{k}\left(x_{0}\right)$ yields the discriminant functions, $\delta_{k}\left(x_{0}\right)$:

Let $K=2$, then the rule reduces to assign x_{0} to class A if

$$
\begin{aligned}
& \frac{\pi_{A} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{A}\right)^{2}\right)}{\sum_{l=1}^{2} \pi_{l} \frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{l}\right)^{2}\right)}>\frac{\pi_{B} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{B}\right)^{2}\right)}{\sum_{l=1}^{2} \pi_{l} \frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{l}\right)^{2}\right)} \\
& \longrightarrow \pi_{A} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{0}-\mu_{A}\right)^{2}\right)>\pi_{B} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{0}-\mu_{B}\right)^{2}\right) \\
& \longrightarrow \pi_{A} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{0}-\mu_{A}\right)^{2}\right)>\pi_{B} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{0}-\mu_{B}\right)^{2}\right) \\
& \longrightarrow \log \pi_{A}-\frac{1}{2 \sigma^{2}}\left(x_{0}-\mu_{A}\right)^{2}>\log \pi_{B}-\frac{1}{2 \sigma^{2}}\left(x_{0}-\mu_{B}\right)^{2} \\
& \longrightarrow \log \pi_{A}-\frac{1}{2 \sigma^{2}}\left(x_{0}^{2}-2 x_{0} \mu_{A}+\mu_{A}^{2}\right)>\log \pi_{B}-\frac{1}{2 \sigma^{2}}\left(x_{0}^{2}-2 x_{0} \mu_{B}+\mu_{B}^{2}\right) \\
& \longrightarrow \log \pi_{A}-\frac{1}{2 \sigma^{2}}\left(-2 x_{0} \mu_{A}+\mu_{A}^{2}\right)>\log \pi_{B}-\frac{1}{2 \sigma^{2}}\left(-2 x_{0} \mu_{B}+\mu_{B}^{2}\right) \\
& \longrightarrow \underbrace{\log \pi_{A}+\frac{x_{0} \mu_{A}}{\sigma^{2}}-\frac{\mu_{A}^{2}}{\sigma^{2}}>\log \pi_{B}+\frac{x_{0} \mu_{B}}{\sigma^{2}}-\frac{\mu_{B}^{2}}{\sigma^{2}}}_{\text {Discriminant function for class A }} \\
& \underbrace{\sigma^{2}}_{\text {Discriminant function for class B }}+\frac{\mu_{A}^{2}}{\sigma^{2}}+\log \pi_{A}>x_{0} \frac{\mu_{B}}{\sigma^{2}}-\frac{\mu_{B}^{2}}{\sigma^{2}}+\log \pi_{B}
\end{aligned}
$$

Multivariate LDA, $p>1$

A p-dimensional random variable X has a multivariate Gaussian distribution with mean μ and variance-covariance Σ, we write $X \sim N(\mu, \Sigma)$.
The multivariate normal density function is:

$$
f(x)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right\}
$$

with x, μ are p-dimensional vectors, Σ is a $p \times p$ variance-covariance matrix.

Multivariate LDA, $K=2$

The discriminant functions are:

$$
\delta_{k}(x)=x^{\top} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{\top} \Sigma^{-1} \mu_{k}+\log \left(\pi_{k}\right)
$$

and Bayes classifier is assign a new observation x_{0} to the class with the highest $\delta_{k}\left(x_{0}\right)$.
When $K=2$ and $\pi_{A}=\pi_{B}$ this reduces to
Assign observation x_{0} to class A if

$$
x_{0}^{\top} \underbrace{\Sigma^{-1}\left(\mu_{A}-\mu_{B}\right)}_{\text {dimension reduction }}>\frac{1}{2}\left(\mu_{A}+\mu_{B}\right)^{\top} \underbrace{\Sigma^{-1}\left(\mu_{A}-\mu_{B}\right)}_{\text {dimension reduction }}
$$

NOTE: Class A and B need to be mapped to the classes in the your data. The class "to the right" on the reduced dimension will correspond to class A in this equation.

Computation

Use sample mean \bar{x}_{k} to estimate μ_{k}, and
to estimate Σ use the pooled variance-covariance:

$$
S=\frac{n_{1} S_{1}+n_{2} S_{2}+\cdots+n_{k} S_{k}}{n_{1}+n_{2}+\cdots+n_{k}}
$$

Example: penguins $1 / 3$

Summary statistics

\# A tibble	2×3		
species	bm	bd	
<fct>	<dbl>	<dbl>	
1 Adelie	3701.	18.3	
2	Gentoo	5076.	15.0
	bm	bd	
bm	210283	321.4	
bd	321	1.5	
	bm	bd	
bm	254133	355.69	
bd	356	0.96	

\# A tibble: 2×3
species bm bd
<fct> <dbl> <dbl>
1 Adelie 3701. 18.3
2 Gentoo 5076. 15.0
bm 210283321.4
bd $321 \quad 1.5$
bm 254133355.69
3560.96

library(discrim)
lda_spec <- discrim_linear() |>
3 set_mode("classification") |>
set_engine("MASS", prior $=c(0.5,0.5))$
lda_fit <- lda_spec |>
fit(species ~ bm + bd, data = p_sub)
8 lda fit

```
parsnip model object
Call:
lda(species ~ bm + bd, data = data, prior = ~c(0.5, 0.5))
Prior probabilities of groups:
Adelie Gentoo
    0.5 0.5
Group means:
    bm bd
Adelie 3701 18
Gentoo 5076 15
Coefficients of linear discriminants:
```

Recommendation: standardise the variables before fitting model, even though it is not necessary for LDA.

Example: penguins ${ }_{2 / 3}$

Summary statistics

$\begin{array}{lll}\text { A tibble: } 2 \times 3 \\ \text { species } & \text { bm bd }\end{array}$
<fct> <dbl> <dbl>
1 Adelie -0.7390 .750
2 Gentoo $0.907-0.921$
bm bd
bm $0.30 \quad 0.19$
bd 0.190 .37
bm bd
bm 0.360 .21
bd 0.210 .24

species

- Adelie
- Gentoo

```
library(discrim)
```

lda_spec <- discrim_linear() |>

```
```

lda_spec <- discrim_linear() |>

```
```

 set_mode("classification") |>
    ```
    set_mode("classification") |>
        set__engine("MASS", prior = c(0.5, 0.5))
        set__engine("MASS", prior = c(0.5, 0.5))
    lda_fit <- lda_spec |>
    lda_fit <- lda_spec |>
    fit(species ~ bm + bd, data = p_sub)
    fit(species ~ bm + bd, data = p_sub)
    lda_fit
```

 lda_fit
    ```
parsnip model object
```

Call:
lda(species ~ bm + bd, data = data, prior = ~c(0.5, 0.5))
Prior probabilities of groups:
Adelie Gentoo
0.5 0.5
Group means:
bm bd
Adelie -0.74 0.75
Gentoo 0.91 -0.92
Coefficients of linear discriminants:

```

\section*{Example: penguins \(3 / 3\)}
\[
S^{-1}\left(\bar{x}_{A}-\bar{x}_{B}\right)
\]

\[
x_{0} S^{-1}\left(\bar{x}_{A}-\bar{x}_{B}\right)>\frac{\bar{x}_{A}+\bar{x}_{B}}{2} S^{-1}\left(\bar{x}_{A}-\bar{x}_{B}\right)
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\(1(\mathrm{~m} 1+\mathrm{m} 2) / 2\)} \\
\hline [,1] & \\
\hline bm 0.084 & \\
\hline bd -0.085 & \\
\hline & matrix((m1 + m2)/2, \(\mathrm{ncol}=2) \%\) \% Spinv \%*\% (m1-m2) \\
\hline \[
\begin{array}{r}
{[, 1]} \\
{[1,]} \\
-2.4
\end{array}
\] & \\
\hline
\end{tabular}

If \(x_{0}\) is \(-0.68,0.93\), what species is it?
\(\square\)
\(\left[\begin{array}{l}\text { [, } 1 \text { ] } \\ 23\end{array}\right.\)

Is Adelie class A or is Gentoo class A?
Check by plugging in the means


\section*{Dimension reduction}

\section*{Dimension reduction via LDA}

Discriminant space: LDA also provides a low-dimensional projection of the p-dimensional space, where the groups are the most separated. For \(K=2\), this is
\[
\Sigma^{-1}\left(\mu_{A}-\mu_{B}\right)
\]

The distance between means relative to the variance-covariance, ie Mahalanobis distance.

\section*{Discriminant space}

The dashed lines are the Bayes decision boundaries. Ellipses that contain \(95 \%\) of the probability for each of the three classes are shown. Solid line corresponds to the class boundaries from the LDA model fit to the sample.



\section*{Discriminant space: using sample statistics}

Discriminant space: is the low-dimensional space where the class means are the furthest apart relative to the common variance-covariance.

The discriminant space is provided by the eigenvectors after making an eigendecomposition of \(W^{-1} B\), where
\[
B=\frac{1}{K} \sum_{i=1}^{K}\left(\bar{x}_{i}-\bar{x}\right)\left(\bar{x}_{i}-\bar{x}\right)^{\top} \quad \text { and } \quad W=\frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}}\left(x_{i}-\bar{x}_{k}\right)\left(x_{i}-\bar{x}_{k}\right)^{\top}
\]

Note \(W\) is the (unweighted) pooled variance-covariance matrix.

\section*{Mahalanobis distance}

For two \(p\)-dimensional vectors, Euclidean distance is
\[
d(x, y)=\sqrt{(x-y)^{\top}(x-y)}
\]
and Mahalanobs distance is
\[
d(x, y)=\sqrt{(x-y)^{\top} \Sigma^{-1}(x-y)}
\]


Which points are closest according to Euclidean distance? Which points are closest relative to the variance-covariance?

\section*{Discriminant space}

In the means of scenarios 1 and 2 are the same, but the variance-covariances are different. The calculated discriminant space is different for different variance-covariances.

Scenario 1


\section*{Scenario 2}


\section*{Quadratic Discriminant Analysis}

If the groups have different variance-covariance matrices, but still come from a normal distribution

\section*{Quadratic DA (QDA)}

If the variance-covariance matrices for the groups are NOT EQUAL, then the discriminant functions are:
\[
\delta_{k}(x)=x^{\top} \Sigma_{k}^{-1} x+x^{\top} \Sigma_{k}^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{\top} \Sigma_{k}^{-1} \mu_{k}-\frac{1}{2} \log \left|\Sigma_{k}\right|+\log \left(\pi_{k}\right)
\]
where \(\Sigma_{k}\) is the population variance-covariance for class \(k\), estimated by the sample variance-covariance \(S_{k}\), and \(\mu_{k}\) is the population mean vector for class \(k\), estimated by the sample mean \(\bar{x}_{k}\).

\section*{Quadratic DA (QDA)}

A quadratic boundary is obtained by relaxing the assumption of equal variancecovariance, and assume that \(\Sigma_{k} \neq \Sigma_{l}, \quad k \neq l, k, l=1, \ldots, K\)


true, LDA, QDA.

\section*{QDA: Olive oils example}

Even if the population is NOT normally distributed, QDA might do reasonably. On this data, region 3 has a "banana-shaped" variance-covariance, and region 2 has two separate clusters. The quadratic boundary though does well to carve the space into neat sections dividing the two regions.


\section*{Checking the assumptions for LDA and QDA \(1 / 2\)}

Check the shape of the variability of each group could be considered to be elliptical, and the size is same for LDA but different to use QDA.

GOOD
(a)

BAD
(a)

(b)


\section*{Checking the assumptions for LDA and QDA \({ }_{2 / 2}\)}

This can also be done for \(p>2\).

DATA


POINTS ON SURFACE OF ELLIPSES


\footnotetext{
from Cook and Laa (2024)
}

\section*{Plotting the model}

Data-in-the-model-space


Model-in-the-data-space


\section*{Next: Trees and forests}```


[^0]:    Source: https://xkcd.com

