

# ETC3250/5250 Introduct Machine Learning

Week 10: Model-based clustering and self-organising maps

#### Professor Di Cook

etc3250.clayton-x@monash.edu

Department of Econometrics and Business Statistics



### **Overview**

We will cover:

- Models of multimodality using Gaussian mixtures
- Fitting model-based clustering
- Diagnostics for the model fit
- Self-organising maps and dimension reduction

2

# **Model-based clustering**

### **Overview**

Model-based clustering makes an assumption about the distribution of the data, primarily

- Assumes the data is a sample from a Gaussian mixture model
- Requires the assumption that clusters have an elliptical shape
- The shape is determined by the variance-covariance of the clusters
- A variety of models is available by using different constraints on the variance-covariance

#### Model is

 $f(x_i) = \sum_{k=1}^G pi_kf_k(x_i; \sum_k, \sum_k, k_k)$ 

where  $(f_k)$  is usually a multivariate normal distribution. The parameters are estimated by maximum likelihood, and choice between models is made using BIC.

### Parametrisation of the var-cov matrices (1/2)

Constraints applied on cluster variance-covariance:

 $[ \sum_k = \lambda k = \lambda k D_k A_k D_k^{top }]$ 

- volume (\(\lambda\_k\)): size of the cluster, ie number of observations
- shape (\(A\_k\)): difference variances
- orientation (\(D\_k\)): aligned with axes (low covariance) or not (high covariance)

- \(\lambda I\) is model 1, EI
- \(\lambda DAD^\top\) is model 7, EEE
- \(\lambda D\_kAD\_k^\top\) is model 11, EEV

| Model | Family    | Volume   | Shape    | Orientation | Identifier |
|-------|-----------|----------|----------|-------------|------------|
| 1     | Spherical | Equal    | Equal    | NA          | EII        |
| 2     | Spherical | Variable | Equal    | NA          | VII        |
| 3     | Diagonal  | Equal    | Equal    | Axes        | EEI        |
| 4     | Diagonal  | Variable | Equal    | Axes        | VEI        |
| 5     | Diagonal  | Equal    | Variable | Axes        | EVI        |
| 6     | Diagonal  | Variable | Variable | Axes        | VVI        |
| 7     | General   | Equal    | Equal    | Equal       | EEE        |
| 8     | General   | Equal    | Variable | Equal       | EVE        |
| 9     | General   | Variable | Equal    | Equal       | VEE        |
| 10    | General   | Variable | Variable | Equal       | VVE        |
| 11    | General   | Equal    | Equal    | Variable    | EEV        |
| 12    | General   | Variable | Equal    | Variable    | VEV        |
| 13    | General   | Equal    | Variable | Variable    | EVV        |
| 14    | General   | Variable | Variable | Variable    | VVV        |

### Parametrisation of the var-cov matrices (2/2)



#### Source: Boehmke (2020) Hands-on machine learning

# Example: nuisance varia



| 1                          | df_<br>sur   | _mc <<br>nmary | <- N<br>y(df | 4clu<br>E_mc |
|----------------------------|--------------|----------------|--------------|--------------|
| Gaussian fi                | <br>.nite    | <br>mix<br>    |              | <br>e mc<br> |
| Mclust EEI<br>components:  | (dia         | gona           | 1,           | equa         |
| log-likeli                 | hood<br>-204 | n<br>100       | df<br>7      | B]<br>-44    |
| Clustering<br>1 2<br>50 50 | tabl         | e:             |              |              |

| <b>ble</b> (1/3)                  |
|-----------------------------------|
| st(df, G = 2)<br>)                |
| odel fitted by EM algorithm       |
| al volume and shape) model with 2 |
| IC ICL                            |

41 -441

# Example: nuisance variable (2/3)

1 plot(df\_mc, what = "density")



#### 1 plot(df mc, what = "uncertainty")

# **Example: nuisance variable** (3/3)

#### **Cluster means**

| [.1] [.2]                                                             |          |          |                           | 1<br>2          | <pre>options(digits=2) df_mc\$parameters\$mean</pre> |  |
|-----------------------------------------------------------------------|----------|----------|---------------------------|-----------------|------------------------------------------------------|--|
| $\begin{array}{c} x1 & -0.97 & 0.97 \\ x2 & 0.11 & -0.11 \end{array}$ | x1<br>x2 | x1<br>x2 | [,1]<br>1 -0.97<br>2 0.11 | ()<br>0.<br>-0. | 2]<br>97<br>11                                       |  |

#### **Cluster variance-covariances**

|          | 1 df_mc\$parame |
|----------|-----------------|
| , , 1    |                 |
|          |                 |
| xl       | x2              |
| x1 0.052 | 0.00            |
| x2 0.000 | 0.98            |
|          |                 |
| , , 2    |                 |
|          |                 |
| x1       | x2              |
| x1 0.052 | 0.00            |
| x2 0.000 | 0.98            |

ETC3250/5250 Lecture 10 | iml.numbat.space



eters<mark>\$variance\$sigma</mark>

# Example: nuisance cases (1/3)



|                            | 1<br>2     | df_<br>sum  | mc<br>mar  | <-<br>Ty(0  | Mo<br>df_  | lu<br>mc  |
|----------------------------|------------|-------------|------------|-------------|------------|-----------|
| Gaussian d                 | <br>£in    |             | <br>mi:    | <br>xtu<br> | re         |           |
| Mclust EEN<br>orientatio   | E (<br>on) | ell:<br>mod | ips<br>del | oid<br>wi   | lal<br>.th | , €<br>2  |
| log-like                   | lih<br>-   | ood<br>205  | 12         | n d<br>0    | f<br>8     | B1<br>-44 |
| Clustering<br>1 2<br>61 59 | g t        | able        | 9:         |             |            |           |



- st(df, G = 2)
- odel fitted by EM algorithm
- equal volume, shape and components:
- IC ICL
- 47 -452

# Example: nuisance cases (2/3)

1 plot(df\_mc, what = "density")





#### 1 plot(df mc, what = "uncertainty")

# **Example: nuisance cases** (3/3)

#### **Cluster means**

x1 -

x2 –

|            | 1 df_mc\$parameters\$mean |
|------------|---------------------------|
| ,1]<br>.88 | [,2]<br>0.92              |
| 0.88       | 0.92                      |
|            |                           |

#### **Cluster variance-covariances**

|     |       | $1 	 df_{}$ | mc <mark>\$</mark> parame |
|-----|-------|-------------|---------------------------|
| ,   | , 1   |             |                           |
|     |       |             |                           |
|     | x1    | x2          |                           |
| x1  | 0.186 | 0.081       |                           |
| x2  | 0.081 | 0.185       |                           |
|     |       |             |                           |
| , , | , 2   |             |                           |
|     |       |             |                           |
|     | x1    | x2          |                           |
| x1  | 0.186 | 0.081       |                           |
| x2  | 0.081 | 0.185       |                           |



eters<mark>\$variance\$sigma</mark>

### Example: penguins (1/2)

ETC3250/5250 Lecture 10 | iml.numbat.space

# Example: penguins (2/2)

#### Code



Best model: VEE, 4

What's wrong with this fit?



# model: VEE, 3Which is the better model? 4 or 3 clusters?Purely based on how well it fits the data?

## Summary

- Model-based clustering provides a nice automated clustering, if the data has neatly separated clusters, even in the presence of nuisance variables.
- Non-elliptical clusters could be modeled by combining multiple ellipses.
- It is affected by nuisance observations, and has a parameter noise to attempt to filter these.
- It may not function so well if the data hasn't got separated clusters.
- (k)-means and Wards linkage hierarchical would yield similar results to constraining the variance-covariance model to EEI (or VII, EEE).
- Having a functional model for the clusters is useful.

# Self-organising maps



## **Overview**

- A self-organizing map is a constrained \(k\)-means algorithm
- A 1D or 2D net is stretched through the data. The knots in the net form the cluster means, and points closest to the knot are considered to belong to that cluster.
- The net provides a low-dimensional summary of the clustering, nodes (and their corresponding clusters) that are close to each other being more similar than those that are further apart.



#### Algorithm

- 1. Scale your data
- space.
- 3. Loop over data points, (x i, i=1)
  - i. find the closest node,  $(m_{k^*})$
  - closer to  $(x_i)$ ,

and  $(h_k)$  is a neighbourhood function, e.g.  $(h_k(x_i,$ function (within a distance or not).

Step 3 is iterated until nodes stop changing position or a stopping rule is satisfied.

2. Initialize the net defined by the knots (nodes  $(m_k, k=1, ..., K)$ ): choose the number of nodes in the horizontal (and vertical directions for 2D), and set initial positions of these (K) nodes (eg first two PCs) in the data

ii. for each node,  $(m_k)$  in the neighborhood of  $(m_{k^*})$  and update it by:  $(m_k = m_k + \alpha h_k(x_i, m_{k^*}))$  (x\_i-m\_{k^\*})), pulling it

where  $(\alpha)$  is a learning rate function that linearly shrinks from 1 to 0, or function with decreasing value as the number of iterations increases,  $m_{k^*})=\exp(\frac{1x_i-m_{k^*}}{2\alpha})$  which is a bubble

## **Example: penguins** (1/2)



rlen controls the length of the optimisation. Tend to need to run it for longer than default.



### Example: penguins (2/2)





The net is stretched and clumped into the three clusters in 4D.

From the map we can see that the clustering has effectively distinguished the species, with some confusion between Chinstrap and Adelie.

#### Example: surface (1/2)

1 c3 som <- som(as.matrix(c3),</pre>

grid = kohonen::somgrid(5, 5, "hexagonal")) 2



#### 1 plot(c3\_som, type="changes")

Iteration

### Example: surface (2/2)





- the net stretches into the vertices of the tetrahedron, filling the smaller tetrahedrons
- see the break so that a 2D net fits the 3D object?
- the 7 noise dimensions were ignored

# Next: Evaluating your clustering model

ETC3250/5250 Lecture 10 I iml.numbat.space