四 MONASH University
 ETC3250/5250 Introduct Machine Learning

Week 1: Foundations of machine learning

Professor Di Cook

etc3250.clayton-x@monash.edu
Department of Econometrics and Business Statistics

Welcome! Meet the teaching team

Chief examiner: Professor Dianne Cook

Communication: All questions need to be communicated through the Discussion forum. Any of a private matter can be addressed to etc3250.clayton-x@monash.edu or through a private message on the edstem forum. Emails should never be sent directly to tutors or the instructor.

Tutors:

- Patrick: 3rd year PhD student working on computer vision for reading residual plots
- Harriet: 2nd year PhD student working on visualisation of uncertainty
- Jayani: 2nd year PhD student working on methods for understanding how non-linear dimension reduction warps your data
- Krisanat: MBAt graduate, aspiring to be PhD student in 2025

What this course is about

- select and develop appropriate models for clustering, prediction or classification.
- estimate and simulate from a variety of statistical models.
- measure the uncertainty of a prediction or classification using resampling methods.
- apply business analytic tools to produce innovative solutions in finance, marketing, economics and related areas.
- manage very large data sets in a modern software environment.
- explain and interpret the analyses undertaken clearly and effectively.

Assessment

- Weekly learning quizzes: 3\% DUE: Mondays 9am
- Assignment 1:9\%
- Assignment 2: 9\%
- Assignment 3: 9\%
- Project: 10\%
- Final exam: 60\%

How to do well

- Keep up-to-date with content:
- participate in the lecture each week
- attend tutorials
- complete weekly learning quiz to check your understanding
- read the relevant sections of the resource material
- run the code from lectures in the qmd files
- Begin assessments early, when posted, map out a plan to complete it on time
- Ask questions

Machine learning is a big, big area. This semester is like the tip of the iceberg, there's a lot more, and interesting methods and problems, than what we can cover. Take this as a challenge to get you started, and become hungry to learn more!

Types of problems

Framing the problem

1. Supervised classification: categorical y_{i} is available for all x_{i}
2. Unsupervised learning: y_{i} unavailable for all x_{i}

Classification

Clustering

What type of problem is this? (1/3)

Food servers' tips in restaurants may be influenced by many factors, including the nature of the restaurant, size of the party, and table locations in the restaurant. Restaurant managers need to know which factors matter when they assign tables to food servers. For the sake of staff morale, they usually want to avoid either the substance or the appearance of unfair treatment of the servers, for whom tips (at least in restaurants in the United States) are a major component of pay.
In one restaurant, a food server recorded the following data on all customers they served during an interval of two and a half months in early 1990. The restaurant, located in a suburban shopping mall, was part of a national chain and served a varied menu. In observance of local law the restaurant offered seating in a non-smoking section to patrons who requested it. Each record includes a day and time, and taken together, they show the server's work schedule.

What is y ? What is x ?

What type of problem is this? (2/3)

Every person monitored their email for a week and recorded information about each email message; for example, whether it was spam, and what day of the week and time of day the email arrived. We want to use this information to build a spam filter, a classifier that will catch spam with high probability but will never classify good email as spam.
What is y ? What is x ?

What type of problem is this? (3/3)

A health insurance company collected the following information about households:

- Total number of doctor visits per year
- Total household size
- Total number of hospital visits per year
- Average age of household members
- Total number of gym memberships
- Use of physiotherapy and chiropractic services
- Total number of optometrist visits

The health insurance company wants to provide a small range of products, containing different bundles of services and for different levels of cover, to market to customers. What is y ? What is x ?

Math and computing

Data: math

n number of observations or sample points
p number of variables or the dimension of the data
A data matrix is denoted as:

$$
\mathbf{X}_{n \times p}=\left(\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{p}
\end{array}\right)=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 p} \\
x_{21} & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right)
$$

This is also considered the matrix of predictors, or explanatory or independent variables, features, attributes, or input.

Data: computing

1	```library(mvtnorm) vc <- matrix(c(1, 0.5, 0.2, 0.5, 1, -0.3, 0.2, -0.3, 1), ncol=3, byrow=TRUE) set.seed(449) x <- rmvnorm(5, mean = c(-0.2, 0, 0.3), sigma = vc)``` x
[, 1	[,2] [,3]
[1,] -0.42	1.011-0.645
[$2, \mathrm{]}$-0.82	-0.988-0.370
[3,] -0.98	0.660-0.133
[4,] -0.12	-0.252 0.567
[5,] -0.36	0.5541 .370

What's the dimension of the data?

What's the dimension of the data?

Observations and variables: math

The $i^{\text {th }}$ observation is denoted as
The $j^{t h}$ variable is denoted as

$$
x_{i}=\left(\begin{array}{llll}
x_{i 1} & x_{i 2} & \ldots & x_{i p}
\end{array}\right)
$$

$$
x_{j}=\left(\begin{array}{c}
x_{1 j} \\
x_{2 j} \\
\vdots \\
x_{n j}
\end{array}\right)
$$

Observations and variables: computing

Observations - rows

$1 \mathrm{x}[2]$,
$[1]-0.829-0.988-0.370$

		p_tidy	$\mid>$	slice_sample()	
\# A tibble:	1	$\times 5$			
species	bl	bd	fl	bm	
<fct>	<dbl>	<dbl>	<int>	<int>	
1	Chinstrap	51.5	18.7	187	3250

Variables - columns

$1 \times[, 1]$
$[1]-0.423-0.829-0.981-0.129-0.366$

1 p_tidy \|> pull(fl)													
[1]	181	186	195	NA	193	190	181	195	193	190	186	180	182
[14]	191	198	185	195	197	184	194	174	180	189	185	180	187
[27]	183	187	172	180	178	178	188	184	195	196	190	180	181
[40]	184	182	195	186	196	185	190	182	179	190	191	186	188
[53]	190	200	187	191	186	193	181	194	185	195	185	192	184
[66]	192	195	188	190	198	190	190	196	197	190	195	191	184
[79]	187	195	189	196	187	193	191	194	190	189	189	190	202
[92]	205	185	186	187	208	190	196	178	192	192	203	183	190
[105]	193	184	199	190	181	197	198	191	193	197	191	196	188
[118]	199	189	189	187	198	176	202	186	199	191	195	191	210
[131]	190	197	193	199	187	190	191	200	185	193	193	187	188
[144]	190	192	185	190	184	195	193	187	201	211	230	210	218
[157]	215	210	211	219	209	215	214	216	214	213	210	217	210
[170]	221	209	222	218	215	213	215	215	215	216	215	210	220
[183]	222	209	207	230	220	220	213	219	208	208	208	225	210

Response: math

The response variable (or target variable, output, outcome measurement), when it exists, is denoted as:

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

An observation can also be written as

$$
\mathcal{D}=\left\{\left(y_{i}, x_{i}\right)\right\}_{i=1}^{n}=\left\{\left(y_{1}, x_{1}\right),\left(y_{2}, x_{2}\right), \ldots,\left(y_{n}, x_{n}\right)\right\}
$$

where x_{i} is a vector with p elements.

Response: computing

species is the response variable, and it is categorical.

	$\begin{aligned} & \text { set.se } \\ & \text { p_tidy } \end{aligned}$	$\begin{gathered} \mathrm{ed}(424 \\ \mid>\mathrm{sl} \end{gathered}$	ice_sa	mple($\mathrm{n}=10$)
\# A tibble: 10×5				
species	bl	bd	fl	bm
<fct>	<dbl>	<dbl>	<int>	<int>
1 Gentoo	47.4	14.6	212	4725
2 Gentoo	46.2	14.5	209	4800
3 Chinstrap	45.6	19.4	194	3525
4 Adelie	38.8	17.6	191	3275
5 Gentoo	50	15.3	220	5550
6 Chinstrap	46	18.9	195	4150
7 Adelie	38.9	18.8	190	3600
8 Gentoo	46.5	14.5	213	4400
9 Gentoo	46.8	14.3	215	4850
10 Gentoo	45.7	13.9	214	4400

A binary matrix format is sometimes useful.

Linear algebra

A transposed data matrix is denoted as

$$
\mathbf{X}^{\top}=\left(\begin{array}{cccc}
x_{11} & x_{21} & \ldots & x_{n 1} \\
x_{12} & x_{22} & \ldots & x_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1 p} & x_{2 p} & \ldots & x_{n p}
\end{array}\right)_{p \times n}
$$

Matrix multiplication: math

$$
\begin{gathered}
\mathbf{A}_{2 \times 3}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \\
\mathbf{B}_{3 \times 4}=\left(\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34}
\end{array}\right)
\end{gathered}
$$

then

$$
\mathbf{A} \mathbf{B}_{2 \times 4}=\left(\begin{array}{cccc}
\sum_{j=1}^{3} a_{1 j} b_{j 1} & \sum_{j=1}^{3} a_{1 j} b_{j 2} & \sum_{j=1}^{3} a_{1 j} b_{j 3} & \sum_{j=1}^{3} a_{1 j} b_{j 4} \\
\sum_{j=1}^{3} a_{2 j} b_{j 1} & \sum_{j=1}^{3} a_{2 j} b_{j 2} & \sum_{j=1}^{3} a_{2 j} b_{j 3} & \sum_{j=1}^{3} a_{2 j} b_{j 4}
\end{array}\right)
$$

Pour the rows into the columns. Note: You can't do BA!

Matrix multiplication: computing

Try this:

$$
1 \text { t(x) \%*\% proj }
$$

It produces an error because it can't be done

Error in $t(x) \% * \%$ proj : non-conformable arguments

Notice: $\% * \%$ uses a $*$ so it is NOT the tidyverse pipe.

Identity matrix

$$
I=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & 0 \\
0 & 0 & & 1
\end{array}\right)_{p \times p}
$$

Inverting a matrix: math

Suppose that \mathbf{A} is square

$$
\mathbf{A}_{2 \times 2}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then the inverse is (if $a d-b c \neq 0$)

$$
\mathbf{A}_{2 \times 2}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

and $\mathbf{A A}^{-1}=I$ where

$$
\mathbf{I}_{2 \times 2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\text { If } A B=I \text {, then } B=A^{-1} \text {. }
$$

1 vc
[,1] [,2] [, 3]
$\left[\begin{array}{llll}{[1,]} & 1.0 & 0.5 & 0.2\end{array}\right.$
$[2] \quad 0.5 \quad 1.0-$,
$[3] \quad 0.2-0.3-$,
1 vc_i <- solve(vc)
2 vc_i
[,1] [,2] [,3]
[1,] 1.625-1.000-0.625
$[2]-$,1.000 1.714 0.714
$[3]-0.625-,0.714 \quad 1.339$
1 VC \%*\% vc_i
$[, 1] \quad[, 2] \quad[, 3]$
$[1] \quad 1.00 \mathrm{e}+,007.45 \mathrm{e}-17$-7.34e-18
[2,] -1.96e-16 1.00e+00 4.82e-17
[3,] $0.00 \mathrm{e}+000.00 \mathrm{e}+00 \quad 1.00 \mathrm{e}+00$

Projections

$d(\leq p)$ is used to denote the number of variables in a lower dimensional space, usually by taking a projection.
A is a $p \times d$ orthonormal basis, $A^{\top} A=I_{d}$ ($A^{\prime} A=I_{d}$).
The projection of \mathbf{x}_{i} onto A is $A^{\top} \mathbf{x}_{i}$.

1 proj
[,1] [,2]
[1,] 0.707
[2,] 0.707
[3,] 0.000
$1 \operatorname{sum}\left(\operatorname{proj}[, 1]^{\wedge} 2\right)$
[1] 1
$1 \operatorname{sum}\left(\operatorname{proj}[, 2]^{\wedge} 2\right)$
[1] 1
$1 \operatorname{sum}(\operatorname{proj}[, 1] * \operatorname{proj}[, 2])$
[1] 0

proj would be considered to be a orthonormal projection matrix.

Conceptual framework

Accuracy vs interpretability

Predictive accuracy

The primary purpose is to be able to predict \widehat{Y} for new data. And we'd like to do that well! That is, accurately.

Interpretability

Almost equally important is that we want to understand the relationship between \mathbf{X} and Y. The simpler model that is (almost) as accurate is the one we choose, always.

From Interpretable Machine Learning

Training vs test splits

When data are reused for multiple tasks, instead of carefully spent from the finite data budget, certain risks increase, such as the risk of accentuating bias or compounding effects from methodological errors. Julia Silge

- Training set: Used to fit the model, might be also broken into a validation set for frequent assessment of fit.
- Test set: Purely used to assess final models performance on future data.

Training vs test splits

Always stratify splitting by sub-groups, especially response variable classes.

Measuring accuracy for categorical response

Compute \hat{y} from training data, $\left\{\left(y_{i}, \mathbf{x}_{i}\right)\right\}_{i=1}^{n}$. The error rate (fraction of misclassifications) to get the Training Error Rate

$$
\text { Error rate }=\frac{1}{n} \sum_{i=1}^{n} I\left(y_{i} \neq \hat{y}\left(\mathbf{x}_{i}\right)\right)
$$

A better estimate of future accuracy is obtained using test data to get the Test Error Rate.

Training error will usually be smaller than test error. When it is much smaller, it indicates that the model is too well fitted to the training data to be accurate on future data (over-fitted).

Confusion (misclassification) matrix

predicted

		1	0
true	1	a	b
	0	c	d

Consider 1=positive (P), 0=negative (N).

- True positive (TP): a
- True negative (TN): d
- False positive (FP): c (Type I error)
- False negative (FN): b (Type II error)
- Sensitivity, recall, hit rate, or true positive rate (TPR): TP/P = a/(a+b)
- Specificity, selectivity or true negative rate (TNR): TN/N = d/(c+d)
- Prevalence: $P /(P+N)=(a+b) /(a+b+c+d)$
- Accuracy: $(\mathrm{TP}+\mathrm{TN}) /(\mathrm{P}+\mathrm{N})=$ $(a+d) /(a+b+c+d)$
- Balanced accuracy: (TPR + TNR)/2 (or average class errors)

Confusion (misclassification) matrix: computing

Two classes

More than two classes

[1] 0.714
1 bal_accuracy(a3, y, pred) |> pull(.estimate)
[1] 0.783

Receiver Operator Curves (ROC)

The balance of getting it right, without predicting everything as positive.

From wikipedia
Need predictive probabilities, probability of being each class.

1 a2 |> slice_head $(\mathrm{n}=3)$

```
# A tibble: 3 x 4
    y pred bilby quokka
    <fct> <fct> <dbl> <dbl>
1 bilby bilby 0.9 0.1
2 bilby bilby 0.8 0.2
3 bilby bilby 0.9 0.1
```

 1
 2 roc_curve(a2, a , bilby) $\mid>$

Parametric vs non-parametric

Parametric methods

- Assume that the model takes a specific form
- Fitting then is a matter of estimating the parameters of the model
- Generally considered to be less flexible
- If assumptions are wrong, performance likely to be poor

Non-parametric methods

- No specific assumptions
- Allow the data to specify the model form, without being too rough or wiggly
- More flexible
- Generally needs more observations, and not too many variables
- Easier to over-fit

From XKCD

Observed data

Black line is true boundary.

Grids (right) show boundaries for two different models.

Parametric

Non-parametric

Reducible vs irreducible error

Parametric errors

Non-parametric errors

If the model form is incorrect, the error (solid circles) may arise from wrong shape, and is thus reducible. Irreducible means that we have got the right model and mistakes (solid circles) are random noise.

Flexible vs inflexible

Less flexible

More flexible

Parametric models tend to be less flexible but non-parametric models can be flexible or less flexible depending on parameter settings.

Bias vs variance

Bias is the error that is introduced by modeling a complicated problem by a simpler problem.

- For example, linear regression assumes a linear relationship and perhaps the relationship is not exactly linear.
- In general, but not always, the more flexible a method is, the less bias it will have because it can fit a complex shape better.

Variance refers to how much your estimate would change if you had different training data. Its measuring how much your model depends on the data you have, to the neglect of future data.

- In general, the more flexible a method is, the more variance it has.
- The size of the training data can impact on the variance.

Bias

Large bias

When you impose too many assumptions with a parametric model, or use an inadequate nonparametric model, such as not letting an algorithm converge fully.

Small bias

When the model closely captures the true shape, with a parametric model or a flexible model.

Variance

Small variance

This fit will be virtually identical even if we had a different training sample.

Large variance

Likely to get a very different model if a different training set is used.

Bias-variance tradeoff

$\mathrm{KNN}: \mathrm{K}=1$

KNN: $K=100$

KNN: K=10

X_{1}

Goal: Without knowing what the true structure is, fit the signal and ignore the noise. Be flexible but not too flexible.

Images 2.16, 2.15 from ISLR

Trade-off between accuracy and interpretability

Diagnosing the fit

Compute and examine the usual diagnostics, some methods have more

- fit statistics: accuracy, sensitivity, specificity
- errors/misclassifications
- variable importance
- plot residuals, examine the misclassifications
- check test set is similar to training

Go beyond... Look at the data and the model together!

Training - plusses; Test - dots

Feature engineering

Creating new variables to get better fits is a special skill! Sometimes automated by the method. All are transformations of the original variables. (See tidymodels steps.)

- scaling, centering, sphering (step_pca)
- log or square root or box-cox transformation (step_log)
- ratio of values (step_ratio)
- polynomials or splines: x_{1}^{2}, x_{1}^{3} (step_ns)
- dummy variables: categorical predictors expanded into multiple new binary variables (step_dummy)
- Convolutional Neural Networks: neural networks but with pre-processing of images to combine values of neighbouring pixels; flattening of images

The big picture

1. Know your data

- Categorical response or no response
- Types of predictors: quantitative, categorical
- Independent observations
- Do you need to handle missing values?
- Are there anomalous observations?

2. Plot your data

- What are the shapes (distribution and variance)?
- Are there gaps or separations (centres)?

3. Fit a model or two

- Compute fit statistics
- Plot the model
- Examine parameter estimates

4. Diagnostics

- Which is the better model
- Is there a simpler model?
- Are the errors reducible or systematic?
- Are you confident that your bias is low and variance is low?

Next: Visualisation

